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Neurobiological theories of awareness propose divergent accounts
of the spatial extent of brain changes that support conscious
perception. Whereas focal theories posit mostly local regional
changes, global theories propose that awareness emerges from the
propagation of neural signals across a broad extent of sensory and
association cortex. Here we tested the scalar extent of brain changes
associated with awareness using graph theoretical analysis applied
to functional connectivity data acquired at ultra-high field while
subjects performed a simple masked target detection task. We found
that awareness of a visual target is associated with a degradation
of the modularity of the brain’s functional networks brought about
by an increase in intermodular functional connectivity. These results
provide compelling evidence that awareness is associated with truly
global changes in the brain’s functional connectivity.
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Three broad classes of models have been proposed to explain
the neural basis of awareness, with these classes primarily

differing on the predicted extent of neural information changes
associated with conscious perception. According to focal theo-
ries, awareness results from local changes in neural activity in
either the perceptual substrates (1–3) or in higher-level nodes of
information processing pathways (4). By contrast, network-level
theories posit that awareness is tightly associated with activation
of parietofrontal attention networks of the brain (5–11). Finally,
global models propose that awareness results from widespread
changes in the activation state (12–15) and functional connec-
tivity (16–19) of the brain. Though there is strong experimental
support for network-level theories, there is scant experimental
evidence in favor of truly sweeping, widespread changes in brain
activity with conscious perception despite the fact that global
scale models have recently come to prominence in the theoret-
ical landscape of this field.
Using a graph theoretical approach applied to ultra-high-field

fMRI data, here we experimentally tested a key tenet of global
theories: the widespread emergence of large-scale functional
connectivity with awareness. Graph theory analyses are ideal
tools to test global models of awareness because they can provide
concise measures of the integration and segregation of inter-
connected nodes of a system (20). Applied to functional imaging
data, we treat individual brain regions of interest (ROIs) as
nodes, functional connectivity between ROIs as edges, and
functional brain networks as interconnected modules of nodes.
When examining a large set of ROIs that encompass the dif-
ferent networks of the human cerebral cortex (21, 22), we can
apply graph theory analyses to estimate the extent to which key
measures of global information processing are altered by the state
of awareness. This approach has been previously applied to study
differences in cognitive states (23–31). Although recent studies
have taken advantage of graph theory analysis to examine the
connectivity patterns that precede a conscious event (32) or fol-
lowing pharmacologically induced loss of consciousness (33), this
approach had yet to be used for characterizing the topology as-
sociated with conscious target perception per se, a necessary test
for global theories of awareness.

If the changes with awareness are truly global, one should see
such changes even if the task does not require complex dis-
crimination, identification, and semantic processes that may
recruit vast extents of cortical tissue that are not necessarily as-
sociated with conscious perception; in other words, these global
changes should appear even for the simple conscious detection of
a flashed disk. For this reason, we had participants perform an
elementary masked target detection task (Fig. 1) while being
scanned at ultra-high field (7 T). The task included three trial
types: forward-masked, backward-masked, and no-target con-
ditions. In the forward-masked (paracontrast) condition, a 133-
ms-duration annular mask offset 33 ms before the target (a disk
whose exterior border coincided with the interior border of the
annulus) presented for 33 ms. In the backward-masked (meta-
contrast) condition, the order of mask/target presentation was
reversed while keeping all timing parameters the same. Under
such conditions, forward masking of targets has been shown to
impair target detection more than backward masking (34, 35).
Consequently, the mask/target orderings provided a manipulation
of target awareness while maintaining the same mask and target
presentation times across both forward- and backward-masked
conditions. Because on each trial, participants made a detection
response about the presence or absence of the target followed by
a confidence rating on their response, subjects’ performance could
be assessed on both an objective (discriminability index d′) and
subjective (confidence rating) measure of awareness (36). In turn,
only trials in which the target was either seen (aware) or unseen
(unaware) at high confidence levels were used for analysis of brain
imaging data. Finally, because the report of the percept was 12 s
removed from the stimulus presentations (Fig. 1), the task design
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precluded initiation of the motor response itself from influencing
estimates of awareness. Although response selection and motor
preparation processes likely occur during this period, similar
preparation would occur across all conditions.

Results
Target discriminability was greater under the backward-masked
condition than the forward-masked condition [main effect of
masking condition, F(1, 92) = 35.51, P < 0.001]. Moreover, this
difference in target discriminability between the backward and
forward conditions increased at the highest confidence ratings
[main effect of confidence rating (Fig. 2), F(4, 92) = 9.82, P <
0.001]. These results not only demonstrate that the masking ma-
nipulation was successful in affecting target detection but also
indicate that high confidence ratings provide a robust means of
distinguishing between seen and unseen targets.
To assess whether consciously aware and unaware target states

were associated with distinct global patterns of functional con-
nectivity, we compared the differences in graph theoretical metrics
between seen and unseen trials for high confidence ratings only
(ratings of 4 and 5 on a 5-point scale). To increase the number of
trials entering into the analysis, each trial type was pooled across
both the forward- and backward-masked conditions and classified
as target aware (seen) or unaware (unseen) trial types. Because
most of the target-aware trials came from the backward-masked
condition (∼83%), whereas the target-unaware trials primarily
originated from the forward-masked condition (∼84%), we ex-
amined whether the results obtained for the data pooled across
masking conditions also held for comparisons within each masking
conditions (SI Results).
We assessed pairwise functional connectivity across 264 nodes

of the cerebral cortex (22) via the generalized psychophysiolog-
ical interaction (PPI) method (37). The PPI methodology aims to
isolate task-induced changes in connectivity from both task-
evoked amplitude differences as well as from connectivity dif-
ferences unrelated to task, using the blood oxygen level-depen-
dent (BOLD) signal (38). Fig. 3A illustrates weighted connection
matrices for all pairwise PPI parameter estimates, averaged
across subjects, between each of the 264 cortical nodes for target
aware and unaware conditions organized using the Power et al.
(21) parcellation. Projections of the nodes and edges onto 2D
cortical representations in Fig. 3B highlight the widespread dif-
ferences in functional PPI strengths between aware and unaware
states. It is difficult to draw firm conclusions about connectivity
changes with awareness from visual inspection of these matrices
or projections alone. Hence, we quantitatively assessed network
topology changes with awareness by estimating metrics belonging
to key graph theoretical categories of network segregation, in-
tegration, and centrality based on the top 10% of connection
strengths (Fig. 4A), although similar results were obtained using
a range of decreased strength thresholds (SI Results). If aware-
ness is associated with widespread increases in cortical functional
connectivity, it would likely be accompanied by decreased net-
work segregation, increased network integration, and increased
node centrality (i.e., highly interactive nodes that facilitate func-
tional integration).

Functional modularity, a measure of the ability to segregate the
connectivity patterns into clearly distinct networks, decreased with
target awareness [target aware vs. unaware; Wilcoxon’s signed-
rank test, P = 0.043, PSdep = 0.75 (a measure of nonparametric
effect size)]. Moreover, the average participation coefficient, a
value assessing between-network connectivity strengths, was greater
in the target aware condition than in the unaware condition
(Wilcoxon’s signed-rank test, P = 0.009, PSdep = 0.67). Typically,
functional network topologies are complex, with more long-dis-
tance connections than lattice (i.e., serially connected) networks
but fewer than randomly connected networks (39). This complex
topology is thought to be a functionally and metabolically efficient
middle ground between random and lattice organizations. Changes
in functional modularity and participation toward more random-
like (i.e., a normalized value of 1) organizations suggest a shift
along this efficiency spectrum to favor longer-distance connections
at the expense of segregation of functional networks (26).
Modularity and average participation coefficient were the only

metrics to exhibit changes between aware and unaware con-
ditions. The average clustering coefficient, a different measure of
network segregation that estimates the degree to which neigh-
boring nodes tend to interconnect with one another, was not af-
fected by the awareness manipulation (Wilcoxon’s signed-rank
test, P = 0.689, PSdep = 0.54). The average path length, a metric of
integration that measures the average functional distance between
two nodes, did not show differences between aware and unaware
conditions (Wilcoxon’s signed-rank test, P = 0.753, PSdep = 0.54).
Unlike modularity and the participation coefficient, neither of
these metrics takes into account module membership. The finding
that modularity and participation coefficient—measures that are
sensitive to changes in intermodular communication as opposed to
changes in individual node connectivity—are those that are al-
tered with awareness strongly suggests that awareness is associated
with a breakdown of the brain’s network modularity.
The hypothesis that conscious target perception is associated

with whole-brain functional connectivity changes would be strongly
validated if it were replicated in an independent trial data set:
high-confidence false alarms and correct rejections in no-target
trials. These two trial types have physically identical stimulus pre-
sentations (no targets), but very distinct percepts (aware vs. un-
aware). False alarm trials showed lower modularity compared with
correct rejection trials (Fig. 4B; Wilcoxon’s signed-rank test, P =
0.007, PSdep = 0.67), and average participation coefficients were
higher during false alarm trials compared with correct rejections
as well (Wilcoxon’s signed-rank test, P = 0.0002, PSdep = 0.79).
Absent a target, the highly confident awareness of a percept
appears sufficient to alter the brain’s network topology; this
might take place because the false alarm trials correspond to
those with structured internal noise sufficient to trigger the
simple percept of a flash (40). These results provide converging
evidence that reported perception of the target stimulus, regardless
of masking manipulations or target presence, produces decreased
functional modularity while increasing average participation.

Fig. 1. Schematic of behavioral paradigm with forward-masked and
backward-masked trial types (no-target trials not shown). On each trial, par-
ticipants responded whether they detected the target stimulus and indicated
a confidence rating for their answer (Methods).

Fig. 2. Behavioral results calculated as d′, a measure of target discrimina-
bility from noise. Target stimuli were seen reliably more often in backward-
masked trials compared with forward-masked trials, especially at high con-
fidence ratings. Global connectivity analysis was confined to the high-confidence
trials (ratings of 4 and 5) to ensure potent differences between aware and
unaware states. Error bars show within-group SE.
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It is conceivable that the functional connectivity changes ob-
served with awareness arise from large connectivity changes
between a small number of networks, rather than truly global
topological changes. If one module or a small set of modules
showed greater between-network connectivity changes compared
with the others, it should be detectable by testing for an in-
teraction between networks and target awareness state in par-
ticipation coefficient (a measure of intermodule communica-
tion). To test this possibility, we used the fourteen consensus
networks identified by Power et al. (21). Using the participation
coefficients (calculated either based on module membership
detected by our modularity calculations or based on the Power
et al. (21) networks as the source of module membership), we
estimated the average participation coefficient for nodes in each
of the fourteen Power et al. (21) networks for each subject in
the target aware and unaware conditions. A repeated-measures
ANOVA showed no significant interaction between condition
(aware vs. unaware) and network for either of the analytical
methods [Fs (13, 299) < 1.03, Ps > 0.43]. It is unlikely that the
global modularity and participation differences observed in the
present data between the aware and unaware conditions pri-
marily stem from changes in a restricted set of networks.
If not driven by a small number of networks, perhaps our

global metrics are instead skewed by massive connectivity
changes occurring with awareness in a small number of nodes.
To examine this possibility, we tested the integrity of the global
network to removal of the most highly interconnected nodes
on a per subject basis (20). If these nodes were singularly re-
sponsible for what appeared to be global effects, we should no
longer observe difference in modularity and participation co-
efficient between aware and unaware conditions following re-
moval of these highly connected nodes. Excluded nodes were
defined as the regions with the greatest summed weighted con-
nection strengths [i.e., the sum of all pairwise connections made
by that particular node, thresholded at the top 1% (three nodes)
or 10% (27 nodes) of the most interconnected nodes].
Even after removal of these nodes, modularity still differed

between aware and unaware, with greater modularity in the un-
aware compared with aware conditions (1%, P = 0.046, PSdep =
0.71; 10%, P = 0.046, PSdep = 0.71). Correspondingly, functional
participation still increased with awareness after this targeted
attack (1%, P = 0.01, PSdep = 0.67; marginally at 10%, P = 0.063,
PSdep = 0.58). No significant differences were found for the
clustering coefficient (1%, P = 0.732, PSdep = 0.54; 10%, P = 0.775,

PSdep = 0.5) or average path length (1%, P = 0.753, PSdep = 0.54;
10%, P = 0.65, PSdep = 0.58). The effects of awareness on graph
theory metrics do not appear to be driven by a small subset of
nodes showing the highest connectivity changes.
A final possibility that we considered was that the global con-

nectivity changes were driven by the brain regions that showed
significant BOLD amplitude changes with awareness [as identified
in statistical parametric maps (SPMs) of the contrast of high-
confidence aware vs. high-confidence unaware conditions] (SI
Results). To address this issue, we performed a similar targeted
attack analysis as above, excluding nodes that overlapped with
activated voxels in the SPMs. After removal of the eight nodes
that were identified as overlapping with foci activated with the
awareness manipulation, modularity was still greater in the un-
aware condition (P = 0.043, PSdep = 0.67), whereas participation
was greater in the aware condition (P = 0.007, PSdep = 0.67).
Again, we found no significant differences between average
path length (P = 0.753, PSdep = 0.54) and the clustering co-
efficient (P = 0.797, PSdep = 0.5) between conditions. The brain
regions that showed significant BOLD amplitude changes do not
solely drive the global connectivity changes observed with the
awareness manipulation.
Taken together, these results suggest that target awareness is

associated with degradation of modularity in the brain’s func-
tional networks via an increase in the participation coefficient
without changes in clustering coefficient. Awareness may be as-
sociated with a widespread increase in functional connectivity
across modules rather than within modules. These results are
also in line with reports that manipulations of working memory
load can increase intermodular communication and decrease
modularity in the absence of global efficiency changes (25),
lending credence to our conclusion that decreased functional
modularity with awareness results from widespread increased
intermodular connectivity.

Discussion
A key finding of the present study is the selective effect of
target awareness on a specific subset of graph theory metrics
associated with intermodular connectivity. Whereas modularity
and intermodular participation indices were affected by the
awareness manipulation, there were no changes in clustering
coefficient and characteristic path length. Interestingly, the latter
two parameters are used to estimate a network’s small-worldness
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Fig. 3. Group-averaged symmetric connectivity graphs for target-aware
and -unaware conditions thresholded at the top 10%. Node coordinates
were derived from ref. 21. (A) Aware (Upper) and unaware (Lower) ma-
trices are organized by the 14 network assignments described by Power
et al. (21). Heat scale indicates magnitude of interaction regressor (seed ×
condition; PPI) parameter estimates. (B) Differences between subject-
averaged connectivity matrices plotted for aware minus unaware. Values
were derived by subtracted subject-averaged graphs shown in Fig. 3A. Hot
colors depict stronger connections for the aware than unaware condition,
whereas cool colors depict unaware connections greater than aware. Plots
are shown overlaid on a surface projection for reference to anatomical di-
rection and general location. Difference scores with the greatest absolute
value are plotted above weaker differences.

Fig. 4. Effect of awareness manipulation on graph theoretic measurements
for target-aware and -unaware trials. (A) Comparison of target-aware
and -unaware trials (collapsed across target-present conditions). Significant
differences between aware vs. unaware conditions were only observed for
modularity and participation metrics. (B) Comparison of false alarm trials
(aware) to correct rejection trials (unaware) from the no-target condition. All
y-axis values represent the ratio of the observed graph theory metric to the
corresponding random graph metrics (Methods). Error bars represent within-
group SE. Asterisks indicate significant differences between groups at P < 0.05.
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(41), i.e., a network’s tendency to exhibit both high functional
segregation and efficiency. The average path length (and the
related global efficiency metric) is largely insensitive to multiple,
long paths in larger networks (42), precisely the pattern of
connections that appear to be most affected by awareness based
on participation differences observed in our data. Additionally,
existence of small-worldness is defined by strong local clustering
(43) that may not be affected by the cross-modular changes seen
here with awareness. Awareness of a simple percept may not
significantly affect small-worldness because both of the measures
used to compute this network feature are more sensitive to
intramodular local connections, whereas it is the intermodular
connections that are evidently preferentially affected by conscious
target perception. As previous studies have identified broad
increases in long-distance oscillatory synchrony as a marker of
consciousness (33, 44–46), it is conceivable that increase in par-
ticipation and breakdown of modularity are a result of changes in
long-distance functional synchrony following target awareness.
As a whole, the present findings provide strong evidence in

support of global theories of awareness, in which the conscious
perception of a stimulus is associated with whole-brain dynamic
alterations in functional connectivity. Such results may explain why
awareness is a unitary phenomenal experience (47), and suggest the
means by which information at the focus of attention is broadcasted
across the cerebral cortex. It is noteworthy that the changes asso-
ciated with awareness observed here are more extensive than those
reported on the basis of BOLD amplitude changes, which tend to
show scattered cortical activation foci with awareness (3, 4, 48–51).
Such a BOLD amplitude pattern of frontoparietal activity was in
fact observed in our own data when comparing target aware and
unaware conditions (SI Results). As such, these results imply—aside
from differences in sensitivity between BOLD amplitude and
functional connectivity approaches—that connectivity differences
may reflect latent changes in the functional state of distant brain
structures, priming them for target-related activation should the
task or environmental situation call upon it.
Importantly, even though our results reveal global summary

changes in modularity and participation that are not driven by
massive connectivity changes in a single network or small number
of nodes, they do not discount focal or network-level contributions
to awareness. Instead, we view these global connectivity changes
to be a complementary aspect of awareness to the recruitment of
frontoparietal regions observed in numerous univariate studies of
BOLD amplitude changes (5–11, 48–51). It is only once we are
able to integrate the findings obtained at different levels of anal-
ysis that we will have a comprehensive understanding of the neural
basis of awareness.
Finally, though our findings suggest that changes in a single

network do not drive the global functional connectivity changes,
not all network interconnectivity is similarly engaged. It may very
well be, for example, that visual and auditory awareness would
reveal a different balance in functional weights across the brain’s
networks. Nevertheless, though more studies are evidently re-
quired to account for the differentiable aspects of consciousness
(52), our results reveal a possible mechanism supporting the
integrative nature of this mental state.

Methods
Participants. Twenty-eight individuals (aged 18–33; 15 females) recruited
from the Vanderbilt University community participated in the study. All
participants had normal or corrected-to-normal vision. The Vanderbilt Uni-
versity Institutional Review Board approved the experimental protocol, and
informed consent was obtained from all subjects. Data from four partic-
ipants were excluded due to technical difficulties (two participants), exces-
sive head motion (>6 mm; one participant), and failure to follow task
instructions (one participant).

Behavioral Paradigm. Stimuli were presented using Psychophysics Toolbox
extensions (53–55) in MATLAB (MathWorks). All stimuli were shown overlaid
on a white background with a persistent, centered, black fixation square
(0.25° visual angle). Participants were instructed to monitor each trial for
a target stimulus, ignoring a mask stimulus. The target stimulus, a filled gray

disk (1° visual angle), was presented at the center of the screen for 33 ms.
The mask was a centered, black annulus (from 1° inner edge to 2° outer
edge) surrounding the target disk and was shown for 133 ms.

All participants saw three conditions: forward masked, backward masked,
and no target. Forward-masked and backward-masked trial types are shown
in Fig. 1. In addition, 14 of the 24 participants saw rare oddball images in 5%
of all trials. These surprise trials were not analyzed for the current study.

Each trial began with enlargement of the fixation square for 200ms, cuing
the participants for the upcoming target and/or mask presentation 800 ms
after the fixation returned to its standard size. An interstimulus interval (ISI)
of 33 ms separated the mask and target on all target-present trials. When the
mask precedes the target (forward or paracontrast masking) at these timing
parameters, target detection is severely impaired. By contrast, when themask
follows the target (backward or metacontrast masking), target detection
improves (34, 35). A 12-s fixation interval followed the stimulus presentations
to allow the BOLD signal for target detection to be dissociated from the target
response BOLD signal (see fMRI Methods below). Following the 12-s interval,
participants responded to an on-screen prompt (1.5 s) whether they had
detected the target stimulus, using one of two right-handed button presses
for yes or no. Participants were then prompted (1.5 s) to provide a rating, on
a scale of 1–5, of how confident they were in their previous detection response
(1 = no confidence; 5 = total confidence) with a left-handed button press. The
rating scale remained on screen for the duration of each prompt. The next trial
began following another 11-s fixation period.

This stimulus presentation paradigm afforded several advantages for
assessing the changes in global functional connectivity with target aware-
ness. First, the reversed mask/target orderings provided a manipulation of
target awareness while maintaining identical mask and target presentation
durations across both forward- and backward-masked conditions. This con-
sistency across conditions allowed examination of robust effects of target
awareness without differences in overall physical stimulation. Moreover, our
paradigm yielded robust numbers of trials in which the subjects were highly
confident they either did or did not see the target (56). In addition, because
all stimuli were presented at fixation, the task required no spatial shifts of
attention or eye movements. Finally, by using a very simple stimulus target-
mask presentation paradigm that only required rudimentary target stimulus
detection (brief percept of a disk), our manipulation provides a strong test
of the global theories of awareness because it is unlikely to evoke wide-
spread activation associated with identification, discrimination, or semantic
processing (as may occur, e.g., with the attentional blink paradigm).

Twenty-one of the participants completed between four and five fMRI
runs (three completed four runs, whereas the remaining 18 completed five
runs), each consisting of 20 trials split between the backward-masked, for-
ward-masked, and no-target trials (35%, 35%, and 30%, respectively). Three
additional participants completed between five and eight fMRI (one com-
pleting five, one completing six, and one completing eight) runs consisting of
15 trials each (five of each of the three trial types). Trial types were presented
in a pseudorandomized order in each run. Trials during which participants
failed to provide either a detection response or a confidence rating were
excluded from analysis (<1% of all trials).

fMRI Methods. Stimuli were presented using an Avotec SV-6011 projector
(Avotec, Inc.) back-projected onto a screen inside the scanner. Participants lying in
the scanner viewed the screen through a mirror mounted to the head coil. The
experiment was performed at the Vanderbilt University Institute of Imaging
Sciences on a 7 T Philips Achieva MRI system to benefit from high sensitivity to
BOLD signals (57, 58) while providing full-brain coverage at conventional im-
aging resolutions. Whole-brain, anatomical T1-weighted images were acquired
with a 1 × 1 × 1-mm voxel resolution. Functional T2* images were acquired using
a 3D PRESTO sequence with 3 × 3 × 3-mm voxels and a 1-s volume acquisition
time (59). Scan parameters consisted of a 10-ms repetition time, 14 ms echo time,
10° flip angle, 216 mm × 216-mm in-plane field of view, 72 × 72 matrix, and
40 slices (covering 120 mm superior–inferior). Each functional scan included ei-
ther 410 brain volumes (subjects 1–12) or 545 brain volumes (subjects 13–24).

Data preprocessing was performed using Brain Voyager QX 2.3 (Brain
Innovation) and included 3D head-motion correction and linear trend re-
moval. Functional and anatomical runs were coregistered and transformed
into standard Talairach space (60).

Functional Connectivity Analysis. Cortical ROIs were first defined from the set
of coordinates reported in Power et al. (21), in which authors identify nodes
based on resting-state connectivity data with strong overlap with known
functional-network systems. These nodes were parceled into subgraphs
based on community detection algorithms resulting in strong concordance
with previously identified functional networks. Coordinates, originally reported
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in Montreal Neurological Institute (MNI) space, were converted to Talairach
space using the mni2tal.m function in MATLAB. Four-millimeter radius spheres
were drawn around each coordinate to create a list of 264 ROIs to serve as nodes
for graph theoretical analyses.

To examine connectivity differences associatedwith target awareness with
maximum power, hit trials and miss trials were each collapsed across both
forward- and backward-masked trials, yielding a total of 486 high-confidence
hit trials and 276 high-confidence miss trials. High-confidence trials were
defined as those with ratings of 4 or 5 on the 5-point confidence scale. Given
that each condition (hit andmiss) was comprised of trials primarily originating
from one masking condition (backward and forward, respectively), we also
performed the hit vs. miss analyses on high-confidence trials within each
masking condition to confirm that the results were not due to masking
differences (SI Methods). Although the results of this analysis by masking
conditions are consistent with the main findings, they suffer from low power
because several subjects lacked a sufficient number of high-confidence trials
of one trial type to make these comparisons statistically meaningful. Con-
sequently, to further rule out that changes in connectivity differences with
awareness may be due to masking differences, we also compared false alarm
and correct rejection trials of the no-target condition, because these two
trial types are associated with very difference percepts but identical physical
presentations.

Task-dependent functional connectivity between nodes was estimated
using the generalized psychophysiological interaction (gPPI) method (37).
This method aims to account for task-activation effects and non–task-specific
correlations separately from task-induced connectivity differences (38). gPPI
is considered to be more powerful than a standard PPI analysis (61) and has
been shown to be a better estimate of task-based functional connectivity
than a cross-correlation coefficient (62) (see SI Results for similar results
obtained with the Pearson correlations); it uses the general linear model
(GLM) with three regressor types: condition-specific task regressors (analo-
gous to those used in standard fMRI GLMs), a “seed” time-course regressor,
and condition-specific interaction regressors. The seed time-course regressor
is included to capture signal variance in regions that show correlations with
the seed region outside of task periods of interest. Interaction regressors
were created using the deconvolution method described in McLaren et al.
(37) (see SI Methods for results without this deconvolution step). In essence,
interaction regressors predict correlation with seed region signal, but only
during task-relevant time points (capturing an interaction of seed and
condition factors). Our GLMs included condition-specific regressors for high-
and low-confidence hit trials and miss trials. Each GLM consisted of condi-
tion-specific regressors (modeled as events locked to target/mask pre-
sentation), a seed node BOLD time course, and condition-specific interaction
regressors, all in addition to task regressors of no interest for fixation and
response periods. Parameter estimates for high-confidence interaction
regressors were recorded and organized for graph theoretical analyses.

A separate GLM was run was for each of the 264 possible seeds for each
subject. For each seed region, averaged parameter estimates for PPI in-
teraction regressors were extracted from and averaged across voxels in the
263 remaining ROIs, providing a task-modulated measure of weighted (as
opposed to binary) connectivity between each region pair. Larger parameter
estimates indicate greater signal coherence between seed and target ROI and
thus greater functional connectivity. No directionality was assumed in the
data, and reciprocal pairwise connections were averaged to generate the
final, symmetric graph. PPI analyses were performed using Brain Voyager QX
2.3 and custom MATLAB software.

Graph Theoretical Analysis. Graph theoretical analyses were performed using
the Brain Connectivity Toolbox (41). Graphs (i.e., ROIs and their functional
connections) were constructed and analyzed on an individual subject basis
for each condition of interest (e.g., high-confidence hit, high-confidence
miss trials). As noted in Rubinov and Sporns (41), network properties often
differ based on the number of nodes, connections, and degree distribution
of a network. To construct network measures that allow comparisons across
conditions/graphs that might differ along any of these properties, graph
theory metrics are “normalized” by comparing—on a per subject basis—
each of these metrics against a null hypothesis network, i.e., a network with
a randomized topology that otherwise conserves the size, density, and de-
gree distribution of the original network. All graph theoretic measures were
normalized by dividing by their respective, averaged metric calculated across
100 random graphs, generated via the Brain Connectivity Toolbox function
randmio_und.m. Statistical significance of normalized graph theoretic
measures was performed via Wilcoxon signed-rank tests given the lack of
evidence concerning the normal distribution of graph theoretic metrics (20).
Because graph theoretic metrics can be threshold dependent (63), it is

important to examine graph measurements over a range of possible con-
nection densities. In accordance with prior studies (31, 64, 65), results were
obtained for graph density thresholded at the top 10–30% of individual
subject connections, with 5% steps, for a total of five threshold levels.
Results are presented for the top 10% of connections. Thresholded matrices
were rescaled to the range [0, 1] (41). This normalization procedure was
calculated by dividing each connectivity value by the maximum value in the
graph to rescale values to a similar range as correlations.

Following the approach of previous work in the field, no correction for
multiple comparisons across the multiple measures of network properties
were applied because of the nonindependence of these measures (31, 41, 66)
and because the current study aims only to test the global patterns of to-
pology, rather than the independent properties of individual nodes or ROIs.
Correction for multiple comparisons is normally applied when testing several
ROIs (33, 67, 68) or if statistical significance (on a per voxel basis) acts as
a thresholding step (24, 66, 69–71). The statistical reliability of our findings
was provided by a test of replication; the same results were obtained in two
independent data analyses: comparisons of hits vs. misses as well as the
comparison of false alarms vs. correct rejections.

To measure the graph properties of connections across the brain’s neural
network with our awareness manipulation, we describe connectivity based
on measures of functional segregation, functional integration, and cen-
trality (41). To estimate the functional segregation of the brain’s connec-
tivity, we assessed modularity, or the degree to which a graph (i.e., our
entire ROI set) can be divided into nonoverlapping modules (i.e., networks
of ROIs), via Newman’s spectral algorithm for weighted matrices (72).
Weighted modularity (Qw) was calculated by

Qw =
1
lw

X
i,j∈N

"
wi,j −

kw
i k

w
j

lw

#
∂mi ,mj ,

with weighted connections between nodes i and j(wi,j), sum of all weights in
a graph (lw), weighted degree of a node (ki), and module containing node
i(mi), and ∂mi ,mj = 1 if mi = mj.

Based on themodules identified by Newman’s algorithmwe examined the
participation coefficient (yw), or the degree to which nodes (i.e., ROIs) con-
nect with nodes in other functional modules (networks). Participation pro-
vides a measure of centrality per node—i.e., a measure of a node’s importance
in intermodular communication. Nodes with high participation increase global
integration by facilitating between-module communications. The participation
coefficient was calculated by

ywi = 1−
X
m∈M

�
kw
i ðmÞ
kw
i

�2

,

where ki
w(m) is the weighted degree of connections between node i and

nodes in module m.
We additionally measured each node’s clustering coefficient, a measure of

the degree of segregation present in a network that estimates the extent to
which connectivity is clustered around each node irrespective of its module
membership. The clustering coefficient (Cw), where ti is the number of tri-
angles around node I, is calculated with the following formula:

Cw =
1
n

X
i∈N

2twi
kiðki − 1Þ:

Finally, average path length (Lw), a measure of network integration, pro-
vided a statistic describing the functional distance between nodes, where di,j

is the shortest path length between nodes i and j, computed with a inverse
mapping of weight to length.

Lw =
1
n

X
i∈N

P
j∈N,j≠id

w
ij

n− 1

Further descriptions of how these metrics are calculated and their implica-
tions can be found in Rubinov and Sporns (41).

As a measure of nonparametric effect size, we report the dependent
measures probability of superiority, or PSdep (73). PSdep is defined as

PSdep =
n+

N
,

where n+ is the number of positive difference scores, discarding ties.
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